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To study equilibrium structures of magnetoelastic chains we have introduced an 
equivalent system and examined the whole class of its solutions. Appearance of 
various structures of the chain is due to the choice of an appropriate minimizing 
solution of the equivalent dynamic system. Commensurate and incommensurate 
structures, transitions from ferromagnetic to antiferromagnetic states, and tran- 
sitions to the states with alternating clusters of ordered spins are obtained. 
Conditions for appearance of chaotic structures and amorphous magnetic states 
of the chain are discussed. 

KEY WORDS: Incommensurate structure; chaos; nonlinear resonance; 
magnetoetastic interaction. 

1. INTRODUCTION 

In the papers  in Refs. 1-3 Dzya losh insky  developed a theory of appearance  
of  magnet ic  superstructures due to various kinds of  interact ion (relativist ic 
exchange interact ion of  the " s p i n - s p i n "  type, " sp in - l a t t i ce"  interaction,  and 
strong anisotropic  one). A magnet ic  superstructure was character ized by 
occurrence of  a large per iod of modula t ion  incommensura te  with the main 
lat t ice period. Such a si tuat ion turned out, in essence, to be typical  of  the 
variety of  physical  systems (as an example,  see Bak 's  review article 
article(4)). Extensive s tudy was made  of  the common picture of  the 
" commensu ra t e - incommensu ra t e "  t ransi t ion ( C - l )  in cont inuous models  in 
the works of  Pokrovsky,  C5'6) Influence of  elastic propert ies  of  the substrate  
was studied in Ref. 7. Study of  discrete elastic chains led to some new 
physical  effects due to the system's  discreteness.  (8-12) In par t icular ,  the 
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occurrence of the structural disorder region appeared to be one of these 
important effects. This region always leads to blurring of the transition point 
(C-l) and its width is determined by the width of the stochastic layer that 
comes about in the region of destructing separatrix by weak perturbations. In 
cases studied in Refs. 10 and 11 the width of the "structural chaos" region is 
exponentially small, t13) Appearance of a second transition boundary and 
large metastable regions of structural disorder were considered in Ref. 12. 
Conditions for the existence of large regions of structural chaos were 
considered also in Refs. 8, 10, 15. 

In accordance with these results one needs an exhaustive analysis of 
discrete models. The present paper is devoted to investigating a one- 
dimensional classical chain of spins with magnetoelastic interaction. In the 
absence of exchange interaction the atomic chain in question may undergo 
the (C-l) and ( / -"chaos")  transitions. The exchange interaction leads to 
influence of the atomic arrangement on mutual orientation of spins through 
the magnetoelastic interaction. This yields, in its turn, a variety of modulated 
magnetic structures, in particular, a chaotic magnetic one. 

The difference of the considered model both from the cases of Refs. 1-3 
and the model ANNNI (4) lies in the presence of the magnetoelastic links and 
in the existence of combined structural and magnetic transitions in the chain. 

2. MODEL, EQUILIBRIUM CONDITIONS AND AN EQUIVALENT 
DYNAMIC SYSTEM 

Consider a one-dimensional chain which is described by the 
Hamiltonian 

I 2y, 
H=--f ~ p . +  2 . (x"+'-x"-a)2  

q-Z [Jo+8(Xn+l--Xn--a)lSn+lSnq-Z V(Xn) (2.1) 

where Pn, x ,  are the momentum and the coordinate of the nth atom, a is an 
elastic interaction constant, S~ is the spin of the nth atom (the spins of all 
atoms are assumed to be lying in one plane), J0 and e are the parameters of 
exchange and magnetoelastic interactions, a is a constant of the chain in the 
absence of all the interactions but the elastic one, V is an external field 
potential due to either a backing or molecular surrounding of the chain, etc. 
The field has a period ao: V(x + ao) -= V(x). 

Equilibrium conditions for atomic chains are determined by the 
equations 
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p .  = 0, Sn = 0 

x . + ,  - x .  - a + - -  cos(8 .+,  - 8.)  

6 
= x n - x . _ , - - a + - - c o s ( O n - 8 . _ l ) + a - ~ V ' ( x n )  (2.2) 

C~ 

where 8 n is the angle formed by the spin S. with the chain's axis. The 
condition S. = 0 yields 

Denote 

[Jo + e ( x . + ,  - x .  - a ) ]  s i n ( 0 . +  1 - 8 . )  

= [J0 + e(x,, - x n _  1 - a)] sin(0. - 0._1) = const ~ g (2.3) 

g 

I . + , = X n + , - - x . - a + - - c o s ( O n + l - O , ,  ) (x , = 0 )  (2.4) 
12 

Equilibrium conditions (2.2) and (2.3) are reduced to the map-preserving 
measure 

I n + , = I , , + a - l V ' ( x . ) ,  X . + , = X , , + C O ( I n +  0 (2.5) 

where ~o(I.+1) is found as the solution of Eq. (2.3) 

[Jo + e(~  - a)] sin(0.+,  - On) = g (2.6) 

or with regard to (2.4) 

1 - [ j o + C ( o o ( i . + , ) _ a ) ]  2 
= {In+,--  [ m ( I . + , ) - -  a]} 2 (2.7) 

Now we consider the expression 

= ~ o ( I )  --  a -i V(x )  
oo 

'~ a(z-  n) (2.8) 
n ~  --oo 

which will be termed hereafter a Hamiltonian of the equivalent dynamical 
system. It is easily seen then that if d ~ ( I ) / d I =  o~(I) and the "t ime" z 
corresponds to the ordinate along the axis of  the chain, the corresponding 
Hamiltonian equations of motion 

[ -  ~Jf -'V'(x) 
~x - a 

~ ~ o  
~= ~,r - a~r - a , q )  

6(z-n)  

(2.9) 
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lead (after integration in the vicinity of the point z = n) exactly to the map 
(2.5). The point in (2.9) means differentiation with respect to z. 

Thus the problem of determining the ground state of the N-atom chain 
with Hamiltonian (2.1) is reduced to the following one-particle dynamic 
problem. For the dynamic set (2.8) one should clear up all possible dynamic 
trajectories (I(z), x(z)) and with their help calculate H N as a function of 
(/(1), x( l ) ;  I(2), x(2);... I(N), x(N)). Then, minimization of the expression 

1 H F =  N--*~lim ~-  u (2.10) 

determines the minimizing trajectory (I(z),Y(z)) and the ground state, 
respectively. 

Map (2.5) indicates that H N depends on two parameters (I(1), x(0)) as 
a function of displacements. Since the choice of the initial point x(0) is not 
important, minimization occurs only over the initial value I 0. Moreover, spin 
variables lead to one more parameter g, in which one should minimize 

F(g, Io). 
It is noteworthy that according to (2.9) the variables (I,x) are 

canonically conjugate and stand for action phase variables. 
In a particular case for V ( x ) = 0  from (2.5) it follows that 1 ,+1= 

I .  . . . . .  I 0 and with the help of (2.2)-(2.5) we find 

c~ a 

F = -~ (o9 - a) z + --e [J0 + e(o9 - a)](I  0 - o9 + a) 

co = og(I0, g) 

(2.11) 

Minimizing (2.9) over I 0 and g yields 

I ~  x " + l - x " = a + e / a l  (J0 > 0) 
0, + 1 = 0, + nzc 

g = 0 :  X , + l - - x , = a - e / a  I (j0 < 0) 
0,+ 1 0, . . . .  0o 

(2.12) 

This corresponds to such a well-known result as appearance of deformation 
by an amount • because of the magnetoelastic interaction. 
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3. NONLINEAR RESONANCE AND INCOMMENSURATE PHASE 

We consider the Hamiltonian of the equivalent dynamic system (2.7) 
using the method expounded in Refs. 12-13. Represent (2.7) as a Fourier 
series 

~ - - ~ 0 ( I ) -  a-t )_~ ~ Vkexp[(kx/ao--rnz)2zri] (3.1) 
k =  - o o  m ~  -(~) 

From (3.1) and (2.9) it follows that the resonances are possible under the 
condition 

m 
)~ = (D(Imk) ~- a 0 ~ ( 3 . 2 )  

where 1,~ k is the value of action which satisfies (3.2). 
Inserting (3.2) into (2.6) we find 

I m k = a ~  k - - a  •  1--  (3.3) 

where the value of J(o r) = Jo + e (ao(m/k)  - a)  has meaning of the value of 
effective exchange at exact resonance (3.2). 

We further consider the effective Hamiltonian that describes the system 
dynamics (3.1) in the vicinity of an isolated (m, k) resonance. For this we 
present d~0(1 ) in the form of an expansion 

~ 0 ( I )  "~ ~t%O(Imk) ~- ('O(]rnk)(I - -  ]mk) + loo ' ( ]mk)(  [ - -  [mk) 2 

and make a canonical transformation eliminating the term linear in ( I -  Imk) 
(this corresponds to transition into the rotating coordinate system) and 
preserve only the resonance term in the sum in (3.1). This gives (13~ 

~r = �89 2 - 2kqo Vk a -  t COS 

qo = 2Z/ao,  A I  = I - Ir,~, q/ = qo k x  -- 2zcmz 
(3.4) 

where the prime indicates differentiation with respect to I. One can easily see 
that the variables (31, q/) are a canonically conjugate pair. The validity 
condition for Eq. (3.4) has the form (14'13~ 

g k m  = Ik2q  2 VkO,)t(jtmk)/a I "~ 1 (3.5) 

which means the smallness of perturbation compared to nonlinearity. 



398 Belobrov, Tret'yakov, and Zaslavsky 

Using the resonance condition (3.3) and Eq. (2.6), to define co(/) one 
can obtain 

1/W' (Imk) ~- 1 :t= e2g2/ {a(J(or))2[ (j~r))2 - g2] 1/2} (3.6) 

Solutions of the system (3.4) are found from equations 

d AI O~mk dry C3d~mk 
dz -- #t~ ' dz - 9 A ~  (3.7) 

Determining these solutions and putting z - - n ,  we get 

m a o ~ ~arcsin[Ksn(Qkmn, X)], K ~ I  
x " = - k - a ~  t am(KQkmn, l/K), K>f 1 

In = -~- ao -- a + - -  1 + 2KA km a (j~r))2 dn(KQkmn , l/K), 

where 

x<..1 

x > t l  

(3.8) 

K 2 = a(E + qo Vk/a)/2qo Vk 

Qkm =- qo[~ a] 1/2, Akm = Qkm/qoO),(imk ) 
(3.9) 

and E is an arbitrary constant which determines the system energy (3.4); sn, 
cn, dn, am are Jacobian elliptic functions. 

Among all the solutions of (3.8) one should choose only those which 
minimize F under condition (2.6). For arbitrary x substitution of (3.8) in 
(2.6) or (2.7) gives g = 0, i.e., sin(0,+ 1 - 6~,) = 0. Consequently, neighboring 
spins are either parallel or antiparallel. 

From condition c92F/c3g 2 > 0 one can easily get 

sign[sin(0,+ 1 -- 0,)] = --sign J ,+ l  
(3.10) 

J,+ l - Jo + e(oo(I,+ l) - a) 

Thus, mutual orientation of neighboring spins is designated by the sign of 
effective exchange J ,+ l .  This means also that the form of magnetic 
configuration of the chain depends on the spaces between atoms. 

Taking g = 0 into account and putting (3.8) into (2.10) we find 

F =  ~-  a o - a  + 2(1--~c2) Vk + J~or) + 2K(aVk) 1/z - -~ao--a :i: 

l O l  IK-2[EQc)/K(K)-- I+K2] I (3.11) 
X n/2K(1/X) +4x2Vk E(1/K)/K(1/K) 
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where K(tr and E(~c) are full elliptic integrals. The upper line refers to the 
case x ~< 1, and the lower one to the case x />  1. 

For x ~< 1 minimizat ion of (3.11) over ~c yields x----0. In accord with 
(2.5) and (3.2) this corresponds to the exact resonance. The atoms are 
uniformly distributed with a period 

x ,  + 1 - x ,  -- const = a o ( m / k  ) (3.12) 

and with effective spin interaction 

J ,  + ~ = const = J~o r) = Jo + e a o ( m / k  - a/ao)  (3.13) 

From here and (3.10) it follows that if J<o r) < 0 there occurs ferromagnetic 
spin ordering, while for j~r) > 0 there is antiferromagnetic ordering. 

We consider now the minimizat ion of (3.11) for x />  1. This leads to the 
equation 

--~r xE =ao  ~ - - - a  �9 --a (3.14) 

which has a solution only for 

6 = - - a ~  - - a  + - a  ) 6c=---zr (3.15) 

Thus, for 6 ~ tic there exists the sole trivial solution ~c = 0 with the 
period (3.12) corresponding to the so-called commensura te  phase. For  6 >/0 c 
there arises the solution with the incommensurate  phase for which K is 
specified by (3.14) and the modulat ion of  values x ,  is determined by (3.8). 
K = 1 or fi = 6 c is the transition point. The period of structural modulat ion of  
the chain is found from the solution (3.8) and for K/> 1 is equal to 

/l = 2K(1/x) /qo x a -  I/z V~/2 (3.16) 

By a * =  a - - J o / e  we denote such a distance x , + l - x ,  between the coor- 
dinates of neighboring atoms for which the effective exchange J ,+~ changes 
the sign according to (3.10). Assume hereafter for clearness that J0 < 0, 
e > 0 and a o ( m / k  ) > a*.  Then for x = 1 from (3.8) we have 

Xn+] -- X n = CO(I,+ 1) = a o ( m / k )  -- 2 ( V k / a )  '/2 ch - l [q0(n + 1)(Vk/a) 1/2 ] 

(3.17) 
Hence it follows that under the condition 

a o ( m / k  ) - 2 ( V J a )  1/2 > a - J o / e  = a*  (3.18) 
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there comes about the region in which the magnetic order (ferro- or 
antiferromagnetic) is opposite to the magnetic order outside it. The center of 
the region has the coordinate n = - 1  and its boundaries are found from the 
condition 

(m/k )  a o - 2 ( V J a )  ~/2 ch-l[q0(n + 1)(Vk/a) ~/21 = a* (3.19) 

According to (3.19) and (3.15) the size of the region is equal to 

{ 4a 0 ) rcect6c (3.20) 
An ,-, 2n 0 ~-- \ zc26r ] ch -~ 2(~a6r + a,/0 + e 2) 

In a general case, under the condition (3.5), solutions of the (3.8) type 
exist in the region ~2-14) 

6~ < ~ <~ 36~ (3.21) 

For 6 ~> 36c perturbation of the periodic field V(x)  is small. It is a fast 
oscillating function and gives a contribution only to the order V 2. Hence it 
appears that for 6 ~> 36~ the structural phase is determined with an accuracy 
up to V 2 by the uniform distribution of atoms with period (2.12). This 
distribution is modulated with the period a 0 of an external field and with 
amplitude ~ Vk. Elongation of the chain then equals zero with the accuracy 
up to the terms ~V~. 

Let us find in the region (3.21) such a relation between the system 
parameters at which the effective exchange J ,+ l  vanishes. According to 
(3.10) we find 

eo + e[ (m/k)  ao - a + 2(VJa)  1/2 K1] = 0 (3.22) 

where Xl is the solution of Eq. (3.14). Equation (3.22), in particular, for 
~c~- 1 ~ 1, specifies the boundary 

61 ~- 2(c~/0 + e2)/cte >/6 c (3.23) 

which is a starting point of striped atomic structure with two types of 
magnetic order. They take turns with the period )1,(~cl) (3.16). Further 
increasing of x leads to 

X , + l - X , = ( m / k ) a o +  2X(VJct)l/2dn(KQ~,~ �9 ( n +  1), 1 / x ) ~ a *  (3.24) 

for all n. Some value of ~c 2 corresponds to the equality sign in (3.24) at 
n = - 1 .  By means of (3.14) and (3.15) it defines the value 6 z < 36 c. 

Thus, structural states of the chain in the incommensurate phase induce 
the following magnetic structures (for instance, for J0 < 0, e > 0, 
(m/k)  a o > a*, see Fig. 1). 
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X•§ 

a." 

Xn.,f-X~ 

t$  
C~ 

6 
t~ t~ t~ 

Xn"l-Xn l 

Xn.~l -XrL 

Fig. 1. Different equilibrium structures of the magnetoelastic chain: (a)the domain wall 
(~c= 1); (b) the ferromagnetic-antiferromagnetic alternating structure (K~ < x < Kz); 
(c) ferromagnetic incommensurate structure (~c>~c2); (d)chaotic structure (K> 1). The 
ferromagnetic parts of the chain are cross-hatched. 

i. There is antiferromagnetic ordering for c~ < ~ (if the ordering will 
be ferromagnetic).  

2. For  6~ < 6 < rain(62, 3~c) the bands of ferro- and antiferromagnetic 
order alternate. The summary  size of  two adjoining bands is equal to the 
period of the incommensurate  structure 2. 

3. For  6 > 36 c the resonance o f  the first order between the atomic 
chain and the field disappears and one may  neglect magnetoelast ic  effects in 
the first order of  V. The spin order then becomes ferromagnetic.  
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All the rest of the cases determined by the signs of the values J0, e, 
(m/k) a o - a *  can be treated in a similar way. 

4. STRUCTURAL CHAOS AND AMORPHOUS STATES 
OF THE CHAIN 

The case of an isolated resonance (3.2) valid under (3.5) has been 
considered. Now we consider the chain's states in sufficiently strong fields 
V(x), when instead of (3.5) and with regard to (3.6) and g = 0 the opposite 
condition 

K~m = Ik2q~Vk/al ~> 1 (4.1) 

It is well known (~4'16) that there is resonance overlapping in that case 
and stochastic "dynamics" of the equivalent dynamical system arise (2.8), 
(2.9). 

If K ~ 1 the resonance interaction is small. In the vicinity of the 
separatrix 0 c =  1) appears an exponentially narrow stochastic layer the 
width of which is equal in energy to (~4) 

aao/V k ) (4.2) A ~  = 32V k exp(--const 1/2 

where cons t~  1. This leads to blurring of the commensurate- 
incommensurate phase boundary of the structural transition point (x = 1). 
Moreover, in the vicinity of this point stochastic fluctuations of atomic 
arrangement and, consequently, of the value of effective exchange J takes 
place. It is noteworthy that these fluctuations are due to a purely dynamical 
instability of the system. 

One can observe quite another picture under condition (4.1). In that 
case from (2.5) issues the approximate local instability condition 

V"(.o' I dXn+l 1 ~ - -  ~> 1 (4.3) 
dx n a 

Using the expansion (3.1) and the definition of K in (4.1) we have the 
condition K cos gt>~ 1. For sufficiently large K this means that there are 
small islands in phase space (I, ~,) in the vicinity of the points ~,= 
n(2n + 1)/2 in which motion is regular (not stochastic). ~14'16'1v) The island's 
size is 1/K. 

Minimum F realizes at ~' = n/2, i.e., in the center of the main island. 
However, even small fluctuations can "go through" the system into a large 
"stochastic sea" surrounding the islands. In that part of the phase space 
where the dynamics of the equivalent system are stochastic, the motion of 
the system takes place for a large enough time through a small probability to 
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return into the islands of small size. As a result one can regard all the system 
states corresponding to the stochastic dynamics as metastable states. (~z) 
Random distribution of the atoms in the chain like in fluid corresponds to 
them. Thus, the amorphous magnetic structure arises. Here we merely outline 
some of its properties. 

Under the condition K >> 1 we know for the map like (2.5) the following 
correlation function(14-16): 

R ,  = ((eiq~176 qo (2,~ =- -~'-~ J0 dxmeiq~ 

e-"a/lcei"'~ l~ = 2a/ln K =- 2a/h (4.4) 

where the value h is the Kolmogorov entropy and the correlation decay 
length l C determines the nearest order in the system. Uniform distribution in 
x establishes in the interval (0, a). We shall proceed to study this case in a 
subsequent paper (see also Ref. 12). 

In conclusion we should note the following. All the cases considered 
above were connected with the definition of the invariant curves of the map 
(2.5) for which condition (2.7) and the condition of smallness of H are the 
case. As shown in Refs. 18 and 19 for irrational values of w(I)/ao there exist, 
however, other invariant sets of the map (2.5). These sets correspond to a 
periodic trajectory; they have structure of Cantor type (cantori) and 
Hausdorf  dimension <I .  One can interpret them as the rest destroyed 
invariant curves in the Kolmogorov-Arnold-Moser  theory. The stochastic 
trajectories pass through the gaps formed. 

If  the system is in the state, the corresponding periodic trajectory of 
which is cantorus and unattracting (through the Hamiltonian character of 
equations) then an arbitrarily small real perturbation will go through the 
system from this trajectory on the adjoining invariant curve. The role of such 
a perturbation can be played by small thermal fluctuations. In this 
connection the following question arises. Is it possible to observe the states 
corresponding to the cantori unattracting sets? 
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